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Abstract-Elastic fields are presented for line forces and dislocations in the vicinity of a crack tip and of a
contained, double-ended planar crack. The fields of line force couples are also derived. The corresponding
stress intensity factors are listed. The use of these results as two-dimensional Green functions for more
general cases is discussed.

1. INTRODUCTION

Some representations of the elastic fields of line defects lying parallel to the tip of a planar crack
have been available for a considerable period of time. Stroh[l] gave the methodology for
determining such fields in the general anisotropic elastic case. This method has been used to
determine the result for dislocations [2,3] and for line forces [4] in anisotropic media. However,
the results are presented in terms of roots of a sextic equation, the roots being the eigenvalues of
the Stroh theory, and in general require numerical solutions including several matrix inversions.
A somewhat simpler integral theory, which removes the need for the solution of the sextic
equation, has been developed for line defects in continuous media [5, 7]. The integral theory
cannot be applied to crack problems, though, because of the presence of fractional powers of the
coordinates in the crack solutions which prevents a key simplification in choosing coordinates
such that the coefficient of one of them is zero [5-7]. Thus, while the above results are useful for
the case of a limited number of line defects near a crack, they become cumbersome for multiple
defect problems and a simpler solution is desirable.

One can, of course, reduce the anisotropic results to the isotropic case. This procedure has the
disadvantage of requiring cumbersome limiting procedures, however, as demonstrated explicity
for the simplest, high-symmetry, anisotropic results for line defects in continuous media where
analytical results are available [8, 9]. Therefore it is more straightforward to derive the isotropic
results directly by the Muskhelishvili formalism[lO, 11], the procedure followed in this work.

Some limited isotropic results are already in the literature. Rice and Thompson [12] gave the
solution for the image force on a dislocation near a crack tip, while Hirth et al. [13] presented the
stress function for line forces near a crack tip. Here, we present the generating function for the
elastic fields of dislocations, line forces and line force doublets in a body containing a finite,
double-ended crack and for the near-crack tip limit. Stress functions for these defects are also
given.

The results can be used directly in the problem of current interest of describing the plastic
zone near a crack tip in terms of continuous arrays of infinitesimal dislocations[14, 15]. Other
direct applications include the use of the line forces, with their associated fields, in satisfying
compatibility conditions at the boundary between a plastic and elastic zone in macroscopic
problems, or between an atomistic (nonlinear elastic) and linear elastic zone in atomic
calculations of defect fields by computer simulation [16, 17]. In addition the results may be used
as two dimensional Green functions to derive the fields of other entities. For example, the field of
a cylindrical inclusion can be determined by the integral about the inclusion-matrix interface of
the field of a single line force directed normal to the inclusion surface.

In all cases, the results are presented in a form for which the reduction to real and imaginary
parts is obvious. Hence, all results are presented in the briefer complex form.

2. THE CRACK SYSTEM

The geometry of the crack body is depicted in the complex plane in Figs. 1and 2, respectively,
for the single- and double-ended cracks. The arbitrary field positions relative to the crack ends
are z = , exp iO and Zo = '0 exp iOo, while the coordinate positions of the pertinent line defect
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Fig. 1. Coordinate system in the complex plane for a cracked body. The crack tip is at the position of the
origin and it and the line of the defect at ~ lie normal to the page.
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Fig. 2. Coordinate system in the complex plane for a body with a contained crack. The crack tips and the line
of the defect at Elie normal to the page andthe origin is at the centerof the crack.
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Fig. 3. Decomposition of a line force doublet without moment.

relative to the crack ends are g =p exp i/3 and go =po exp i/3o.
Rice[ll] has presented the appropriate line integrals for this type of problem for the stress

intensity factors KI , Ku and KIII and for the derivatives with respect to z, cP' (z) and w' (z) of the
functions cP (z) and w(z) for plane strain (stress) and antiplane strain cases, respectively. In order
to prevent possible confusion in signs, we present the corresponding contour integrals (Figs I, 2).
For the double-ended

(1)
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(2)

(3)

(4)

crack where L is the half-crack length, Pj(xI) = -- U2j(X\, 0) and the latter stresses are those
produced at the position of the crack by a defect in a medium without a crack. For the
single-ended crack,

(5)

(6)

In terms of these quantities, the stress intensity factors and displacements are

U\ + iU2 = (K4>(Z)- 4>(i)-(z - i)4>'(z)]/2p,

U3 = Im[w(z)/p,]

(7)

(8)

(9)

(10)

where p, is the shear modulus, K =3-4v for plane strain and K =(3 - v)/(1 +v) for plane stress,
with v Poisson's ratio. The stresses are

U22 -- ;U12 = 4>'(z) + 4>'(i) + (z -- i)4>"(z)

U33 = v(U\l + (22)

U23 +;U\3 = w'(z)

(11)

(12)

These forms for Uj and Ujk are different from those presented by Rice [ll} but can be derived from
them with the use of his eqn (87).

3. SINGLE LINE DEFECT FIELDS

For line defects parallel to the X3 axis of the corresponding cartesian coordinate system to
those of Figs. 1 and 2, we consider arbitrary force vectors ~ and dislocation Burgers vectors bj •

For the dislocation, the sense vector points in the +X3 direction and the convention is followed
that hj and the sense vector are coincident for a right-handed screw dislocation[8]. For the
antiplane strain case the components b3 and F3 can be used directly. For the plane strain (stress)
case, however, it is convenient to define the functions

F = (F1 + iF2)/2, G = p,b l + ip,b2

and their complex conjugates ft, G.

(13)
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3.1 Single-ended crack
For the antiplane strain case, the generating function is

(14)

where

(15)

cPB(Z) = In (z 112 +el2f.

For the in-plane case, the generating function is

cP(z) = [(F + iG)cPA (z) + (-KF + iG)cPB(z) + (F - iG)cPc(z )]/27r(K + 1). (16)

The additional factor is

(17)

The function cP(z) is given by eqn (16) with z replaced by Z, but we note that

(18)

of use in determining the stresses from eqn (11).
For the above functions, the derivatives to be used in eqns (11) and (12) can be readily

obtained: for example, cP ~(z) = lIz 112(Z 112 +~ 112).

3.2 Double-ended crack
For the double-ended crack, the results, eqns (14) and (16) still apply but cPA(Z), cPB(Z) and

cPc (z) are changed. Rather than present the complete solution, we present the results in the form
of terms to be added to those of eqns (15) and (17) to give the complete answer. The terms to be
added are

cPA (z) = - 2ln [(z 112 + gt12)2 - ( Z0112 + ~0112)2] + 2ln (Z01l2 + ~01/2)

cPB(Z) = - 2ln [(z 112 + e/2)2 - (Z0112 + toI12
)2] + 2ln (Z0112 + to112

)

ZI12(~ - t)
cPc(z) = ~t/2~0t/2(ZOII2 + ~0t/2)'

(19)

In this case the derivatives of eqn (19) for determining the stresses are not so simple. Hence, we
present the contracted forms

cP :"(z) = gt'2/z 112Z01/2(ZOI/2 + ~0112)

cP~(z) = f,112/z112zol/2(zoI12+ f,0112)

(20)

({ _ {)ZI12

(21)

3.3 Stress intensity factors
The stress intensity factors can be used in the usual manner, e.g. with eqns (78)-(83) in

Rice [11], to give the near crack-tip stress fields. For the right-hand tip of the double-ended crack
(the field at the other tip follows because of symmetry), with IzI<a; lei, 12L I,

_ . _ 1 [ . £0
112

_ • tol12
_ ({ + })L(F - iG)]

K r IKrr -(1TL)th(K+1) (F+IG)gm-+( KF+IG) ~112 eothei2
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For the single-ended crack, Le. with Izi <1l: I~l <1l: 12L I,

K - 'K - (2/7r)1/2[p + iO+(-KP + iO) (~;1) (P- -1'0-)]
1 1 Il - (K +1)~ {J/2 2~
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(22)

(23)

(24)

4. LINE FORCE DOUBLETS

For many defect fields, such as the dilatational field of a dislocation [19], it is convenient to
directly use the fields of line force doublets as the pertinent Green function, since then force
equilibrium is naturally satisfied. An arbitrary pair of line forces with force vectors R(r) and
-F;(r - a) separated by a vector ai, defined conventionally in quadrant I to have positive
components al and a2, with a3 = 0, can be decomposed by superposition,U8], into a set of
doublets Mil as illustrated in Fig. 3. In Mil the first index indicates the force direction and the
second the component of aj. The fields of the doublets are determined by letting the separation al
approach zero while PI approaches infinity in such a manner that the product M lj = F;aJ remains
constant. For any of the above functions, then,

(25)

4.1 Single-ended crack
For the antiplane strain case the generating function is

(26)

where

(27)

For the plane strain (stress) case the generating function for the case of doublets without
moment, i.e. MI2 =M21' is

q,(z) = 41T(; +dMII - M 22 +2iM12] q,D(z) +[- KMII - (K - 2)M22 +2iM12]q,B(Z)

- [(~ -l)/2][MII - M22- 2iMI2]q,F(Z) (28)

where

(29)

For the case of doublets with moment, M 12 ~ M2h the function to be added to eqn (28) is

q,(z) = 41T(~ + l)[i(M21 - MI2)q,D(Z) + iK(MI2 - M 21)q,E(Z)

+[(~ -l)/2][iM21 - iMI2]q,F(Z)}. (30)

4.2 Double-ended crack
Equation (26) also gives the result for the antiplane strain case for the double-ended crack, but

eqn (27) is replaced by

q,D(Z) = Z1/2/f/2~OI/2(ZOI/2 + ~Oll2); q,E(Z) = Z 112/l1l2lo'I2(ZOII2 + ~O'I2). (31)
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For the plane strain (stress) case, eqns (28) and (30) apply but eqn (27) is replaced by (31) and eqn
(29) is replaced by

(32)

4.3 Stress intensity factors
For the double-ended crack, the stress intensity factors for the force doublets, which give the

stresses when Izl4: I~I, 12L I as discussed in the previous section are, for the case Mn = M 21 ,

K 'K (7T'L)I/2 {[M M 2'M l//: 1/2/:3/2
I - I II = 21T(K + 1) II - 22 + r 12 ~o ~

+[-KMIl-(K -2)M22+2iMd/(01/2(3/2

- [(~ - ~)[MII - M22 - 2iM12]](3/2~0IJ2~512) +(l/2~03J2~312)]). (33)

The added terms for the case Mn:f. M21 are

K"K (7T'L)I/2 {i(MIZ-M21) i(Mz1 -MI2). -
1- r II = 21T(K +1) ~01l2~312 + ~olJ2ri2 +l(~ - ~)(MI2 - M21)

X[(3/2(01/2(5/2) +(l/2~03/2~3/2)]}.

For the antiplane strain case

(34)

(35)

For the single-ended crack, i.e. when Izl4: 1~14: 2L, the stress intensity factors for the
doublets are, for the case MI2 = M2J,

K 1 - iKu =4~~:7T'11~2)([Mll - M22 +2iMn]/~3/2 +[-KM II - (K - 2)M22+2iMI2]/(3/2

- 3[MII - M22 - 2iMn](€ - ~)/2~512}. (36)

The added terms for the case M12 :f. M21 are

Finally, for the antiplane strain case,

(38)
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